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SUMMARY

The triplet S-wave electron-atomic hydrogen elastic scattering

phase shifts are recalculated by a previously introduced nonadiabatic

theory. The previous calculation has been improved in a number of re-

spects, the most important of which is the use of a noniterative tech-

nique for numerically solving the partial differential equations. (This

technique is expected to be useful for a large class of linear second

order elliptic partial differential equations.) Phase shifts are computed

to better than four significant figures. The results are quite close to

the variational results of Schwartz but on the whole somewhat larger.

The deviations are considered significant, and the various approaches

are discussed: Specifically our triplet scattering length (in Bohr radii)

is a t -_ 1.7683.
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NONADIABATICTHEORY OF

ELECTRON-HYDROGENSCATTERING,PART

A. Temkin and E. Sullivan

Goddard Space Flight Center

INTRODUCTION

The extension of the relative partial wave treatment to the (electron-hydrogen) scattering

problem was introduced (Reference 1) to allow for the calculation of phase shifts of sufficient accu-

racy for experimentalpurposes and to allow for meaningful comparison by approximate theories. The

completion of the original program (Reference 2) has apparently met the purposes for which it was

intended (Reference 3). Reference 2 will be referred to here as Part I, and equations in it which are

referred to will be prefixed by a I. This includes any minor variations in notation.

With regard to the original calculation, it was clear from the first that the devices introduced to

elicit information about the higher corrections -- which, precisely speaking, involved the solutions of

two-dimerisional partial differential equations -- limited the accuracy to significantly less than that to

which the method was intrinsically capable. In addition, a variational calculation (Reference 4) has

appeared in which the estimated accuracy was much higher than in Reference 2.

The variational calculation employed (in Kohn's variational principle) a Hylleraas-type wave

function with an increasingly large number N of parameters. The estimate of the error was based on

the device, first exploited by Pekeris (Reference 5), of observing the results as a function of N. How-

ever, for at least two reasons, the variational calculations pertaining to scattering are not compelling

to the accuracy claimed. First, the variational results at non-zero energies show, as a function of the

nonlinear parameter, a kind of wild behavior which has required a very intuitive method of interpre-

tation (Reference 6). (For k >0 we do not have the cushion of a guaranteed lower bound on the phase

shifts.) More important, however, is the fact that a Hylleraas wave function does not naturally

describe the complete wave function corresponding to a scattering problem. In fact, it has been

conclusively demonstrated (Reference 7) that at zero energy the long-range adiabatic tail is essential

for highly quantitative purposes. Although the variational calculation finally did include such a term

at zero energy, it did not include it for non-zero energies; it is still very much in question to what

extent this term enters at small but finite energies.

*_ith the exception of the description of the numerical method of solution appearing on pages 8 through ld this paper has been published
in Phys. Rev. 129(3):1250-1257, February 1963.



For these reasons it has seemed necessary to carry out our intention of numerical integration

for the higher order correction. The calculation has been restricted to the triplet case as discussed

in the next section. In the third section of this paper wediscuss the methodof numerically integrating

the partial differential equations. Finally in the fourth section of this paper we present results and
discussion.

REVIEW OF THE NONADIABATICTHEORY

It will be recalled that the nonadiabatic theory (Reference 2) starts with a decomposition of the
S-wave function

'2(r z r2_z2 ) - rl r2 _ + 1 4)j(rzr2) P_(cos_12) , (I-3)

Z=0

from which by substitution into the Schrodinger equation an infinite set of coupled two-dimensional

partial differential equations (Equations I-4) results. We define a zeroth order problem by neglecting

the coupling terms of the l = 0 equation; thus

where

= 0 ,

(I-11)

The zeroth order wave function

corresponding to a scattered wave:

82 02

A12 Or12 0r_

• o(°) is required to have the asymptotic boundary condition

lim _o(°)(rl r2) : sin (kr 1 + 8o) Rls(r2) ,
, ,-_ (I- 12)

where _o is the zeroth-order phase shift, and _o can be interpreted as the phase shift of a rudimentary

type of three-body problem, to which, it has been shown in Reference 2, many previous approximations

were unknowingly addressed.

The basic relation of the nonadiabatic theory is given by

i 2 r 2_

sin (8 - _o) = - k- Z=1 _ dr] @°(°) --r'_+' q)_ dr2 ' (I-13)



> r2. Thewhere _ is the exact S-wave phase shift. The integrationdomain is confined to the region r I _

convergence of the terms on the right-hand side was established by noting that the significant contri-

bution to each integral comes from two regions. One is the adiabatic region, r, >> r 2 and r 2 small.

We shall have much to say about this contribution in connection with the shortcomings of the Hylleraas

wave function variational approach; however, for the purposes of the present nonadiabatic theory these

contributions can readily be accounted for, and can be shown to diminish rapidly as a function of l.

The other region which must be considered is for intermediate values of r, and r 2 ; this gives the es-

sential contribution to the deviation of S from S0. A powerful (but nonrigorous) argument for the con-

vergence of this contribution has been given in Reference 2. Briefly it was noted there that each ¢_

equation was a centrifugal barrier term -l C/+1) (r_2+r2-2) which successively diminishes the ampli-

tude of @_ in that region. This argument is the analog of the well known argument that the contribu-

tions of successive partial waves go down for low impacting energies in the complete description of

the scattering process. It should be emphasized, however, that there is not a one-to-one corre-

spondence in this analogy, for in the equations of partial waves there are no coupled terms, whereas

in Equation I-4 the relative partial wave equations are coupled. Thus, whereas we can assert rigor-

ously that only partial S-waves contribute to the zero-energy cross section, it is not true that only the

s-relative angular momentum state contributes to the S-wave phase shift at zero energy. What is here

being asserted is that the contributions from higher relative angular momentum states diminish in a

usefully convergent manner.

There is an additional circumstance, which was not really emphasized in Reference 2, which

renders the argument of convergence particularly cogent in the triplet case. In that case we have the

boundary conditions

_ (r, = r2) = 0, Z = 0,

(°) -- -- o • (i-6)

From inspection of Equation 1-13 we can see, by virtue of the r2 _/rl z+' factor, that the region r 2 }"r,

would tend to become increasingly important for the higher relative partial waves. However, because

of the boundary condition, the contribution from this region must in fact be small; therefore the main

contribution to each integral must come from r 2 significantly less than r 1. But in that region r2//rl_+l

certainly diminishes rapidly as a function of l . Thus, we have every reason for believing the conver-

gence will be exceedingly rapid in the triplet case. The same arguments should also render our per-

turbation theory

particularly effective.

These reasons plus the calculated values which are presented below give a strong expectation that

when the terms through quadratic order are included in the calculation, more than four-place accuracy

will be obtained in the phase shifts. This accuracy is required if the results are to be compared

meaningfully with Schwartz's results.



Theoriginal calculation(Reference2) hasbeenimprovedin twomainrespects. Firstly wehave
generalizedthe zerothorder techniqueof solutionto doubleprecision arithmetic onthe IBM 7090
computer. In thesingleprecisionprogramwewereplaguedwithvanishingdeterminantswhichvery
rapidlyusedupall the eightsignificantfigures that themachinecouldstore. In the doubleprecision
program,the16significantfigures weresufficientto yield zerothorder phaseshifts from better than
four to almosteightsignificantfigures.

Toillustrate thegainin accuracyof our zerothorder resultsby makingtheprogramdoublepre-
cision,Table1presentsatypical set ofresults for k = 0.2. The middle two columns refer to quantities

labeled det and I r in Reference 2. From the first of these we can obtain an indication of the number

of significant figures lost in the evaluation of the determinant det. For example, in the row corre-
4

sponding to the expansion 2, 3, 4, and 5, the main diagonal of det,that is, lI (ME)i: is approximately
i=l

0.6 x 10-9, ifwe figure 0.5 x 10-2 as the average value of a diagonal matrix element. Comparing this

value with 0.42 × 10 -25, the actual value of the determinant, we see that approximately 16 significant

figures have been lost;* this is the maximum number of significant figures that the double precision

arithmetic affords, and the conclusion is reinforced by referring to the next row, 2, 3, 4, 5, I o. Here

almost 25 significant figures have been lost, and the corresponding diagonal sum increases! If the

elements of the calculation have sufficient (infinite) accuracy, it is clear that the addition of a term

to an expansion can only decrease thediagonaI sum. Thus, the So for that expansion is veryunreliable.

In each of the groups of rows separated by dotted lines each subsequent row augments the previous

one by an additional term. It should be noted that except for the above case the diagonal sums diminish.

This should be compared with Table 3 of Reference 8 in which a similar set of results based on a

single precision program was presented. There an increase in the diagonal sum occurred in third row !

In the present case, we could with some legitimacy claim 8o =2.6794194(3); however the value

80 = 2.67942 is quite adequate for our purposes.

Table 1

Zeroth Order Double Preclslon Results for k = 0.2.

Expansion

2
2,3
2,3,4
2,3,4,5
2,3,4,5,I o

Determinant

0.154x10-:
0.315xt0 -6
0.541xl 0-1_
0.418xl 0-2s
0.246xl 0-36

Diagonal Sum

0.358x10 -2
0.141x10 -"
0.231x10 -6
0.137x10 -s
0.553x10 -7

_0

2.71098
2.679565
2.6794215
2.6794197
2.67962

. . . . ......... i ............. N ............. i .........

2,3,I o 0.62 lx 10 -12 0.823x 10 -: 2.6794200
2,3,10 , I : 0.329x 10-16 0.142xl 0 - 7 2.6794192
• • . . . ° . ) ° o . . ° _ • _ m • • ° • • • P ° • ° • • • • • • ° • .i • ° • ° • • ° •

2,4,I o 1 0.123x10 -12 0.773x10-8 2.6794191

2,4,Io, Is, I :o, I2o 0.638x 10-26 0.742x t 0 -8 2.6794191

*The formula for tan 28 involves, among other things, the value of the determinant. It does not follow, however, that there is a one-to-one

correspondence between the number of significant figures in the determinant and in tan 2cS. We have inferred the number of significant

figures by the uniformity of the results for 8 as shown in Table 1. The details are discussed further in Reference 8.



The second and main advancement we have achieved in the way of computing the complete S-wave

phase shifts is the numerical integration of the higher order equations. These are elliptic equations,

and it is well known that the usual way of numerically solving an elliptic equation is by some sort of

relaxation of iteration technique. The novel feature of the technique we have used is that it is not

iterative. Because it has worked where a relaxation technique has utterly failed to converge, and

because it is applicable to a whole class of linear second-order equations, we have given some detail

in the next section to the numerical solution.

SOLUTIONOF THE PARTIAL DIFFERENTIALEQUATIONS

The higher order effects in our expansion are given by the formula

?Z, 2 "Oo°>r 4Oo' r'dr'  I43,sin( - 0) : 0

m_>l, u..->O

(For the purposes of the discussion in the fourth section of this paper we emphasize that this

>,-expansion is a modification of the ordinary /-expansion in relative partial waves, which is expected

to hasten the convergence in the triplet case. It also has additional advantages discussed in Reference 2.)

The partial differential equation for _o v) has been repeated in the last section. We repeat here

the remaining equations:

I£ 2 2 El 2 r12 rl 2 + r22 + --r2 + _l(o ) _ _ r122 @0@) ,
(I-39)

I 2 El 2 rz= -- ¢(e , (I-40)

IA 6 2 Eq_2_o _ _ 2 r22 (I-41)_o(°) ,

4 r2
2 2 4 r22 @(o) - 2 r Z @o(,) + @_) • (I-42)

12 + r22 + _ + @(i) _ % -- _ yr_r 12 r 13 i" i 2 1" 12

In principle these equations are to be integrated over the infinite region 0 _<r 2 _<r I <_ " Inpractice,

of course, we can only integrate up to a finite point r I = R. If R is suitably large, we can perform the

quadratures in Equation 1-43 from R to _ by replacing the functions by their adiabatic forms:

_0 (0) ._ sin (krl+ 80) Rl,(r2) '
(1-17)

2 sin (kr I + 80) (e-ra)k_-7-1 + l J' 1 = 1,2 (I-47)
(1)i(°),T, - rlZ+l)f_ + i



(These functions are exact solutions in the limit r_.)

The So being known, these equations with r, = R then define the boundary conditions on the numer-

ical solution in the region 0<r 2 _<r 1 _<R. It must be emphasized that as long as R is finite there is an

approximation involved in these equations as boundary conditions. For these forms require not only

R_:O, but also that r 2 << R. However, for numerical purposes we must know the boundary conditions

for all values of r 2 _<R; the most natural thing to do is simply to use the above equations for all values

of r 2 . If R is large enough, we can be sure that the error thus incurred is very small, because in the

region r_ _R both the above functions and the true functions will be negligibly small.

The important question concerning R is, how large is large enough? The time required for numer-

ical integration effectively limited us to an R = 10. It was our original intention to use the numerically

integrated _o(°) in the quadratures (Equation 1-43) together with the remaining numerically integrated

functions. Our suspicion of the accuracy of the numerically integrated function was aroused when at

k = 0.4 we found that

_0 fo' -- (gP0(°))2 dr, dr 2

R r 2

r 12

was half the value that we had gotten using the analytic expansion of ¢0_) that we had as a by-product

of the calculation of _0. We were therefore led to examine the deviation of our original _0 (°)

¢o_) = sin (kr,+$o) R,s (r2) +(_+fdp) C e-_-h R (r2) (I-19)

from the boundary values imposed on the numerical solution by Equation 1-17. The results are given

in Table 2.

r 2

1
2
3
4
5
6
7
8
9

10

Table 2

Comparison of the Numerically Integrated Boundary Values at

rI = 10 (k = 0.4) wlth the Expansion of ¢Po(°) in Equation !-19.

_P0 _) (1_0,r2) sin (lOk+ _0)

-0.01913
-0.01363
-0.00685
-0.00259
- 0.00042

O.000486
O.000722
O.0006] 2
O.000334

- O.000003

Rls(rs)

- 0.01853
-0.01363
- 0. 00752
-0.00369
-0.00170
- 0. 000749
-0.000321
-0.000135
- 0. 0000056

0a

aThe expression on the left is not 0 at this point; however, for the purposes of numerical integration

this point, being equal to ra at ra, it was automatically taken as 0 by our program.



The important thing to notice is that the values obtained from the analytic 4,0_o) along the line
-r_tr_ = 10 change sign at r 2 5 whereas those defined by Equation I-17, being proportional to Rls = 2r 2 e ,

do not. We concluded that this change of sign which was not taken care of in the boundary condition of

Equation I-17was responsible for the inaccuracy of the numerically integrated ¢o(°).

The double integral in which we observed the discrepancy is of course part of the dipole "sum

rule"

rl rPo(O) 2 _ ¢1 (0) drl dr2 )t_ r12+ - -- dr I dr 2 (1-51)

In the original calculation (Reference 2) we used this relation to find the nonadiabatic effects of %(0).

In the present case, Equation 1-51 together with its counterpart for el), plus additional sum rules that

we can derive, serve as a check of the numerical integration. Now in the above noted k = 0.4 case it

was observed that the ¢i( °_found from EquationI-39 using the numerically integrated (incorrect) %_o)

gave approximate equality in the sum rule. At work here was undoubtedly the phenomenon that the

(incorrect) %o) is an important enough inhomogeneous term in the differential equation to influence

%¢o) to be incorrect in just such a way as to give equality in Equation 1-51. This experience prevented

any complacency on our part that the satisfaction of sum rules of the numerical function was a foolproof

guarantee that the functions were correct.

The k = 0.4 case is extreme in the sense that at no other energy have we observed the analytic ¢o_)

to change sign in such a prominent place along the boundary. (The change apparently stems from the

fact that _00) has a node very close to r_ = 10 at this energy.) Accordingly the differencesbetween the

integrals on the right-hand side of Equation I- 51using the numerical versus the analytic %_) at other

energies differed only in the second significant figure. However, since we require practically three

significant figures in the integral

1 (folOfo. I _o@) r 2 fcofr_ )= -- -- ¢10) dr 1 dr 2 (1-44)A80 --'_- r12 qbl@)drldr2 + Cot_) r2
dlO d 0 r 12

we could not use the numerically integrated ¢ov).

We therefore decided to use the ¢o (°) obtained from the best expansion (EquationI-19) we had and

numerically integrate for the remaining functions. Our unfortunate experience with the dipole sum

rule gave us some confidence that having a reliable %(o) would make up for any deficiencies in the

boundary conditions for the other functions. The sum rules, of course, still are a necessary condition

to be satisfied; however, in view of the necessity of cutting off the numerical integrals at R, the sum

rules did not afford a critical test of the accuracy. We found that we did have to go a mesh size h = 0.1

to get reasonable results. The most natural further tests of accuracy--further halving the mesh size,

integrating out to double the value of R etc.--were precluded by machine storage and particularly time

considerations. As it was, it took 90 minutes to integrate a differential equation on the IBM 7090, so

that at nine energies and five equations per energy, we had already used a vast amount of time. As we



have said, we are quite confident that we have attained a requisite accuracy, but our present inability

to carry out further checks provides the most serious weakness in the present calculation. We hope

to carry through some of these checks as bigger and faster computers become available.

We now turn to the problem of numerically integrating the partial differential equations. In the

most general case, we have the following boundary value problem: _{x, yl satisfies Equation 1 in a

domain ._

c_2q_ + 02<P + g(x,y)q5 -- f(x,y) (I)
Ox 2 Oy 2

where the values of _ on the boundary are known. If we replace the second order partial derivatives

in Equation 1 with the second differences

Ox 2 h2 <p(x + h,y) - 2_p(x,y) + qb(x - h,y] ,

0Y 2 h2 _b(x,y+h)-2qS(x,y) +_(x,y-h) ,

then Equation 1 can be written as

I--I

qS{x+h,y) + ¢_(x-h,y) + _(x,y+h) + ¢_{x,y-h) + Lh2_(x,y)-4j_(×,y) = h 2 f(x,y) •

(The method we shall subsequently present is readily extendable to higher order difference formulas.)

When this is done we have reduced the problem to a solution of the matrix equation

A¢-- k, (2)

with A an N2x N2 non-singular, real matrix of the coefficients of @ at the N2 internal mesh points and

k a known column vector of the boundary values.

The N2 being onthe order of the square of the number of meshpoints along a boundary N, it appears

that a direct inversion of Equation 2 would be almost impossible. For that reason an iterative solution

is usually attempted in which A is written

A -- I-B,

where I is the unit matrix.

The iteration procedure is defined by

@(n+D = I_p(")+ k • (3)



The superscripts refer to the iteration number. The _(o) is an initial arbitrary guess of the solution.

If we define _i, i = 1, n to be the eigenvalues of matrixB, then

 o.x -- max 1 ,I
i<._i<._n

A necessary and sufficientcondition forthe convergence of system ofEquation 3 is that_'.ax<I (Refer-

ence 9).

The iterative techniques used in the solution of matrix equations are applicable to a wide class of

boundary value problems, but it is sometimes very difficult to determine whether x=a" is less than one.

If >'u. is less thanbut close to one, the number of iterations required for a satisfactory solution becomes

quite large.

The following is an exact method of solving the matrix problem defined by Equation 1. In essence

we are exploiting the fact that although A is of gigantic dimension, it is of a special form, and most of

its elements are zero.

The matrix A of Equation 2 is of the form:

Al. t AI, 2 0 ..............

A2, a A2, 2 A2,3 0 ..........

0 Aa, 2 A3, 3 Aa, 4 0 ......

A = ...................

..... 0 A._-2._-3 An-2.N-2 /_-2.n-, 0

....... 0 An t.N-2 AN l,_-I AN-!

........... 0 AN, N I AN, N

where for the particular triangular boundary of the zeroth order problem A

AI, 2 ofN× (N - I); A2, I

is of dimension N × N ;
1,1

of(N-1)xN;A2.2of(N-1)× (N-l) ; ........ AN.N_Iofl×2 and As. N ofl× 1

We now factor matrix A into the product of two matrices

A = LU ,

which in terms of block matrices can be written:

= A,, A 2 0 .............
!

i &a I h2z A2.j 0 .......... *

i 0 A._ 2 A3 j h._ 4 O .......

_i ..... o AN 2n _ AN 2_ _ AN _ _ , 0

......... O As I N 2 A_-IN I A_ I u

............ 0 A_ _ As N
li

_LI. t

L2 I L2 2

0 La,;' La.a O

0 L_2N3 LN 2,_ 2

0 Ln,_ I LN_

UI 2

I

0 ...........

Ut _ 0 ........

I Ua.,_ 0 ......

I Un ,_ n I (I

O I in t n

I

(4)



Performing the multiplication of L by U as defined by Equation 4 we can express L_.j, U_.j i,j = I,N in

terms of the given matrix A.

LI, 1 = AI, 1

= A i = 2,NLi.i-1 i,i-1

: L-l i = 2,N
Ui-l)i i-l,i-I Ai-l, i

(5)

Li, i -- Ai, i -Li,i_ I Ui_l, i i = 2,N.

The factorization of A in the form of Equation 4 is only possible if the matrices L _._, i = 1,N are

nonsingular (Reference 10).

With this factorization, we have from Equation 2

A<p = LUg> : k . (6)

We let U_ = _, and this gives from Equation 6

L_ = k,

= L -1 k .

(7)

(8)

Writing Equation 7 more explicitly, we have in terms of the block matrices of L

LI, i

L2, I L2,

0 L3.2 L3.3

0 LN2,N 3

0

O

LN-2,N- 2

LN-I,N-2 LN-I,N-I

0 LN, N_ 1 LN, N

_3 ¸

I

I

m

k3]

• )

where _, k 1 are vectors of N elements, _2, k2 are vectors of (N-1) elements, .... ,_, kN are vectors

of 1 element.

From Equation 9:

I,i

(9)

-_i = L-ili (k-i -Li i-, -_i-1) i = 2,N. (10)
t P

10



We have

uS

and putting this in more explicit form, we have

Ul, 2 0

I U2,

I

0

m

From Equation 12 we obtain

= C,

0 ........

Us, 4 0 ......

I UN.2, N_1

I

¢2

¢3

0 •

UN- 1,N "

I _N

_2

C3

CN

(11)

(12)

-ui-l,i " ¢i i = 2, N . (13)

An examination of Equations 10 and 13 indicates that the only inversions necessary in the entire

computation are the inversions of the matrices L i,i i = 1,N This is a result of our factorization

which places the identity matrix on the block diagonal matrices of u. It is of the essence that the

matrices L i. z are, in practice, of a much smaller dimension than the original matrix.

ular boundary we are considering (see also,

Figure 1 of Reference 2) the dimension of Li,i

decreases from LN, N (an N×N matrix) to L1, z y

(dimension 1× 1).

We now give an example of the numerical

method discussed above. Suppose we wishto

solve the following boundary value problem in

the domain _ :

a 2 a 2

_-_x2¢(x,y)+_dy2 q_(x,y)+

Xe -X

We wish to determine the interior points

_1, % , _s, .... , 91o with the boundary values as

specified in Figure 1. The problem is reduced

For the partic-

/f

/ I

_/ I_ lo
/ I I

// / ,

_2 ¢3 _4

(h(x,o)= o

¢ (i, y) = -y

Figure 1--The domaln of integration (_') of the example
given in Equation 14.

11



to a solution of the following system of equations:

135
3-'d-¢, ÷ _2

136

4'x - -_-4'_ + 4'3 + ¢5

137
4'2 " _ ¢3 + ¢4 + 4'6

138
4'3 - "2-6- ¢4 + ¢7

¢2

142
36 Cs + Ce

¢3 + 4'S -13--?-4'6 + ¢,

4'4

144
+ ¢6 - _-4'7

4'6

145
36 Cs + ¢9

1
= _ e -1/3 ,

2
_-- -- e-2/33

1 5
= _- + _e-S/6,0

= _ .t e-S�6,

2
: -- (_-2/3

3

146 1 5
¢7 + 4'8 - 3---6- 4'9 + 4'1o = _" + _e -5/6,

147

where ¢,, ¢2, ¢3, ..... 4',0 are values of the function at the interior points.

The preceding system of equations written in matrix form gives

= -]-+ e-5/6,

135

1

0

0

1 0 0

136

36 I 0

137

0 0 0

1 0 0

0 1 0

138,

0 1 -_ 0 0 1

0 0 0 0

0 0 0 0

0 O 0 0

............. i..........

142
0 1 0 0 - 3--'d'- 1 0

143

0 0 l 0 1 - "_- 1

144

0 0 0 1 0 1 - _ 0 l 0

.............................. ..i _ _

145
0 1 0 - 3_ 1 0

145

0 0 1 1 - _- 1

.......... ! ...... ..1_ _ _
t t

0 0 0 _ 0 l '- _d_
i v

0 0

0 0

0 0 0

0 0 0

0 0 0

1 0 0

0 Ct

0 ¢2

¢3

_s

%

_7

¢8

%

_m

1

e -1/3

1 e_l/2

2
e-2/3

! ._s _-,,,6
6 6

12 e-l/2

_ e-2/3

2
e -2/3

1 5

2 5 e_S/6
J+B
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We now rewrite the matrix on the preceding page in terms of block matrices, and this gives

i

"-A1, x AI, 2 0 0

A2, 1 A2, 2 A2, 3 0

0 A3, 2 A3, 3 A3, 4

0 0 A_, 3 A4. 4

_2

%

k 1

k 2
i

k 3

k4

where

_1 =

%

%
_2 =

_t

1

e-l/2

2

1 5

A1, 1 =

A _-
3,3

B

135

36

0

14s

36

1

1

136

36

1

0

 4oI'

A3, 2 = A2,3T - I00

0 0

1 0

137
36 I

138

e-l/2

2 e_2/3-5

1
+ 65-e-S/e

' k'3 =

, A2, 2 =

A4'4 = I- 13-_-I '

I e-2/3 /1+5 e-s

k4 2+6_e_5/ ,

142
- 36 1 0

143
I -_ i

144
0 1 --_-

= AT = Ii
A2.1 1,2

:[o 1].A4, 3 = ,_k3, 4
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Outlined below is the general form for carrying the computation to completion after the matrices

A,,jwithi,j = 1,4, and the vectors kl with i = 1,4 have been formed.

We firstinvert A,.,= L 1,iand multiply L ,-.'iby the vector kl • This gives the vector -_i (Equations I0),

which we store because itis used later in the computation of the vectors_ i . We now compute the

product L-it.,AI.2=Ut.2,which is also stored because itis used in the computation of the vectors _ . We

now multiply U,.2 by L2.i = A_.I, and subtracting the resulting matrix from A2,2, we have L2.2, which we

invert. The next computation necessary is the product L2._ _, and the resulting vector is subtracted

fromk- 2 We multiply the vector(k2-L2 , _1) just evaluated byL -1 and this gives us the vector-_ 2• , 2,2 _ •

A repetition of the above operations will finally give us the vectors _,, _2, _3, _4, and the matrices

u1.2,u_._,u3. 4. TLis completes the firstpart ofthe computation. We are now in a position to compute

the values of the function_ from Equations 13.

From Equation 13, we have _4 = -_4 • We form the product u3.4_4, which we subtract from _ and

obtainthe vector ¢3" Continuing inthis manner, we compute finally all the vectors _,, ¢2, _s, ¢4 which

are the solution of our boundary value problem.

RESULTS AND DISCUSSION

In Table 3 we have tabulated our results for the higher order corrections.

has been given in the previous section.

The formula for A_0

k_

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A$o
0-10

-0.20256

0.01895

0.03136

0.03530

0.03373

0.03129

0.02939

0.02766

0.02605

10-_

-0.3526

0.01049

0.00510

0.00166

0.00159

0.00188

0.00131

0.00085

0.00096

Table 3

Resume'of H}gher Order Results *

As $o0)
0-10 10 -oo

-0.012304

0.001168

0.002016

0.002418

0.0024685

0.002384

0.002263

0.002145

0.002047

-0.00322

0.000199

0.000119

0.000029

0.000026

0.000041

0.000028

0.000015

0.000019

A2 Bo(1)
O-IO

-0.001032

0.000369

- O.000325

-0.00132

-0.00228

-0.00140

-0.00141

-0.00132

-0.0013O

10-oo

-0.00822

0.000 129

-0.000052

-0.000021

+0.000019

0.0000049

-0.00000875

-0.0000003

-0.0000045

*For the purposes of the scattering length, the k = 0 entries are negative.
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Theremainingtwointegralsare

2 R 00 r, r_ , (I-45)&2 80 (2) 00 (0) r 22 02(0) _O (O) _P2 (°) dr l

0 _0 r13

A2 $ (1) = 2 r_ _ .r,

k _ r is o _ is

The significance of the break-up of the integrals atR = 10 has also been explained. In this connection

it can hardly be overstressed that for small k a significant contribution comes from the region R_< r _ <__o.

In Table 4 we have collected results to show the convergence of the terms multiplying successive

powers of >` in the nonadabiatic series (see also, Equation 43 in Reference 2). The convergence appears

to be even more rapid than an order of magnitude per power of >`. In second order this is due to a

partial cancellation of the terms multiplying >2, a circumstance which may very well have anincreas-

ingly important effect for high powers of _ due to the increasing number of terms which enter. (R is

also possible that it might have the opposite effect.) The final S in each row is then the sum of the

entries to its left to the accuracy that we believe it is meaningful. As a simple extrapolation of the

convergence, we take this to mean an uncertainty of five units in the last figure given for the. phase

shifts. (The scattering length will be discussed below.)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Table 4

The Convergence of the Nonadiabatlc Series.

_o

2.3482
2.907728
2.67942
2.46158
2.25800
2.07102
1.90189
1.75070
1.61666

k

_8 o

-0.55516
0.02944
0.03646
0.03695
0.03532
0.03317
0.03070
0.02853
0.02701

-0,02477
0.001865
0.001758
0.00111
0.000235
0,00104
0.000872
O.00O84
0.00076

1.7683
2.9390
2.7176
2.4996
2.2936
2.1O52
1.9335
1.7801
1.6443

It must be re-emphasized that this >` series is not identical to the more traditional series strictly

in powers of l. The latter may be thought of as having been derived by truncating the original set of

equations (see also, Equation 4 of Reference 2) after l = L. That is,

2 2
12_ /(/+i ) 1 + 1 + -- + -- -Mi ¢I = Mlm(I)m

r I r 2
mS0

l = 0,1, " " ", L •

15



Assuming we could solve each of these problems exactly, we would obtain a sequence of phase shifts

8(L)Which would approach the exact phase shift

lim 8 = 8 •
L_¢o (L)

The 8(o) is of course our 8 o. Beyond that Schwartz (Reference 11) has recently used his variational

technique to solve for 8(1).

There is, however, a somewhat more fundamental, albeit more idealized, sequence 8(L ) which can

be defined. Assume we had the exact wave function • (r 1, r 2 , _1_). Then we could obtain the exact

• _ ( r_ r2) by suitablyprojectingP_ (cos _2)on _. We could then obtain a sequence of 8(t _ from the basic

relation

Clearly the second of these sequences of 8 ¢L) cannot be worse than the first (although the first obviously

comes from a variational principle).

InTable 5 we have collated the results of Schwartz's and our calculations which bear on the latter

sequence of 8(t _ . The column marked _8 is the difference 8(1) - So in Schwartz's calculation.* The

approximation here is the neglect of the back coupling of the higher _ which distinguishes between the

first and the second sequences of 80. ). The analog of AS in our case is Aa a0 + _a 80C_) Here the back

Table 5

Comparison of Schwartz's and Nonadiabat_c Results

Schwartz

AS

0 O.5670
0.1
0.2 0.0362
0.3
0.4 O.0340
0.5
0.6 0.0302
0.7
0.8 0.0250

Nonadlabatic

A80 + A2 8o(D

Schwartz Nonadiabat_c

A s 8o_)

Schwartz Nonadiabatlc

0.5644
0.02986
0.03608
0.03561
0.03306
0.03178
0.03038
0.02721
0.02571

0.0126

0.0015

0.0018

0.0008

0.0017

0.01552
0.001367
0.002135
0.002447
0.002495
0.002425
0.002291
0. 002160
0.002066

1.7686
2.9388
2.7171
2.4996
2.2938
2.1046
1.9329
1.7797
1.643

1.7683
2.9390
2.7176
2.4996
2.2936
2.1052
1.9335
1.7801
1.6444

*Some time ago we requested Dr. Schwartz to use his Hylleraas variational approach to calculate 8 0 by omitting all terms depending on r,a.

Dr. Schwartz kindly carried out these calculations which served as a check on our original zeroth order results (Reference 2). The calcula-

tions were subsequently expanded to comprise the contents of Tables 2 and 3 of Reference 11.
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coupling is consistently taken into account, but we have only included two terms of a (presumably

rapidly convergent) infinite series. In the column marked A2 80(2) we have presented only the

first term of the relevant infinite series. The corresponding column of Schwartz has been obtained by

subtracting his final phase shifts from 8(1). If his ansatz for the wave function were exact, we could

conclude that this was the contribution of all remaining multipoles,

However, the ansatz for the complete wave function contains (presumably) about the same number of

parameters as that used in obtaining 8(,). Therefore, it is by no means clear that projecting out _1

from his • will give the same accuracy as his explicitly calculated 8(,).

For these reasons it can hardly be expected that there would be equality between the corresponding

entries in Table 5. Nevertheless the rather wide deviation of the individual entries bespeaks of the

possibility that the agreement to almost five significant figures in the final phase shifts may be some-

what coincidental. For the purposes of later discussion it should be noted that our quadrupole contri-

bution is larger than all the remaining multipoles in Schwartz's calculation. (Thus, his results suggest

a more rapid rate of convergence of the /-expansion than our own!)

Schwartz has also commented (Reference 11) on the relative angular momentum expansion in

these types of problems. (The part of his scattering calculation which concerns the triplet phase shift

has been given in Table 5.) The bulk of his calculation is concerned with the second order energy (for

the singlet spin state):

< r12

E2 = + Eo - E
(15)

Using the well known expansion of 2//r12 in Legendre polynomials,

rl 2 rt+l , ,
/,=0 >

Schwartz can put Equation 15 into the form

E 2 = _-_E2(I} ,

_=O

where the E2(I) can be well defined (Reference 12). With each E2(l) there is associated a wave

function _ {l) which, aside from the angular dependence P_ (cos _2) , is a function of the two radial

variable r, and r 2. Reduced to its bare essentials, Schwartz's argument runs as follows: if we treat

each l problem variationally with the usual type of smooth polynomial trial functions, then the l = 0

17



andl = 1 problems can be well approximated whereas the higher l problems become increasingly

difficult. The reasons for the increasing difficulty of approximation by conventional means is due to

the fact that the functions _ (l) have discontinuities in their second derivates coming ultimately from

different analytic forms of r<l/r>/+1 in the regions r 1 > r 2 and r 1<r 2 . The discontinuities correspond

to the q_ (l) becoming more and more sharply peaked about the line r I = r 2 . On the basis that the

bump itself provides the dominant contribution to the energy, Schwartz has derived the asymptotic

formula for large l

45 1
E 2 (/} "_ - _ _ (16)

This then, defines the convergence of this specific problem rather than any inaccurate calculations

for E2 (l)for l > 1, which in general will tend to give the idea of a much more rapid convergence.*

Equation 16 applies to the specific problem of the second order energy in the sir, glet (space-

symmetric) state; however, it is not unreasonable to assume l-" characterizes the complete energy

(or other physical property) in the l-expansion. Whether Z-n constitutes a rapidly convergent series

depends on the type of problem at hand. In bound state problems where much greater experimental

accuracy is in general available, it is necessary to be quite demanding in this regard. Even here,

however, the convergence of Equation 16 is not in principle uncompetitive with traditional techniques.

Thus, if we associate the inclusion of an additional l component with the inclusion of an additional

parameter in conventional expansions, in which the use of 100 (Reference 5) and over 1000 parameters

(Reference 13) has now been accomplished, a competitive 8 to 12 significant figure accuracy would be

achieved. The fact that a (presently) conventional approach cannot be used in accomplishing this does

not present an a priori objection to the rate of convergence of the l -expansion.

*Reference 11 must be read very carefully here; otherwise it may give the erroneous impression that

Z2(/) _ "_ E2{/) ,
I=2

which, if it were true, would be a more serious criticism of the convergence. What in fact is being asserted is that Schwartz's conventional

calculation of

must be in error in such a way as to give a spurious rate of convergence. Nevertheless we can be quite sure that correctly

E E2(1) _ (0.99} E2(1) "

Z=2 _=2
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In his discussion of the extension of the relative partial wave treatment to the scattering problem,

we find that Schwartz has insufficiently stressed the different physics involved. First it is clear that

because of the disparity in experimental accuracy not nearly the accuracy of a bound state problem

is required to correlate theory with experiment.

In order further to discuss the scattering case, it is necessary to clarify the following point. In

scattering calculations r 1 r 2 times the wave function has a nonvanishing component

lim
= A sin _kr I + $) R1, (r2) ,r 1 r 2rl-_?

which must be included in order to make any kind of analysis. In discussing the aspects of r_ r 2

below, we shall always disregard this nonvanishing component.

The main difference between thebound state wave function (with anykind of forces) and scattering

wave functions (involving Coulomb forces) is that the bound-state wave function vanishes exponentially

in all asymptotic regions of configuration space whereas the scattering wave function does not. It has

been one of the primary points of the nonadiabatic theory in the decomposition of r_ r 2 • in terms of

P_ (cos _2), EquationI-3, that the associated _ can be shown to have slowly vanishing adiabatic forms

÷lim _ _ _ e-r2
rl-_° '2_'+ 1 rl[÷l

It has further been derived as one of the main results of this theory that the scattering length due to

the dipole term will be diminished by an amount (Reference 7)

9(_ a+a° )= a{R) - _ 2R2 + '

where a(R) comes from a wave function which is more sharply cut off and hence more characteristic

of a problem in a finite "sphere" of radius R. This prediction (Reference 7 and A. Temkin personal

communication to C. Schwartz) was tacitly confirmed by the calculation of Schwartz (Reference 4) in

which, when the variational counterpart of _1 was included, his scattering length was reduced by over

5 percent. Thus, whereas the nonadiabatic theory incorporates both short-range correlations (via the

convergent expansion in l ) and long-range effects naturally, the Hylleraas type wave function by itself

cannot practically deal with the latter. [Tables 2 and 3 of Schwartz's paper (Reference 11) include

¢1 in the calculations of the k = 0 entries for _. {s +p) as well as _ (complete).]

That a Hylleraas type wave function does not naturally describe the long-range correlations can

be further brought home by reference to the paper of Ohmura and Ohmura (Reference 14.) In their
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cleverdeductionof the singlet scattering length,theseauthorsrequiredthe coefficientCC_)in the
adiabaticform

e-,r, R,. (r2)
lira _ = C(¢o) (17)

r 1__<_ r! r 2

of the H- wave function. Here 7 is the square root of the electron affinity and being small it makes the

term simulate the nonvanishing term in a scattering calculation. This form is not the analytic form

of the Pekeris or Hylleraas wave functions both of which have the exponential dependence

I 'Xl 1/2 )1exp - --_-'- (r 1 + r 2 ,

where E is the total energy of the H- ion. In order to evaluate C(_o), Ohmura andOhmura used the 161

and 203 parameter Pekeris wave functions (Reference 5). They concluded that, whereas the wave

function reproduces the adiabatic form (Equation 17) quite accurately in the region r I = 10 to 12

(r 2 = 0), deviations in the variational approximations for r 1> 12 were quite noticeable l

We shall now show that the inability of Schwartz's zero energy wave function to describe the

adiabatic part of the quadrupole term can explain the difference between his triplet scattering length

1.7686, and our own 1.7683. To repeat, at zero energy Schwartz's v is made to contain _)1(°di°b) but

not ¢2('di°b) . Using the same type analysis that we made on the dipole effect, we can write the long-

range contribution of the quadrupole term as

-'_ R F6 k'O

- -2[ R4 + ....

If we associate Schwartz's value with a(R),a very reasonable choice of R {R _ 25) will reproduce

our own value for a. Although from the experimental point of view the difference between the two

numbers is completely negligible, it is worth noting that the new scattering length is outside of

Schwartz's limit of error (Reference 4). We are inclined to think that the unaccounted for higher

multipole may contribute an additional couple of units in the last place (see also, the k = 0 row of

Table 4). We would extrapolate the triplet scattering length to be:

a t = 1,7675 ± .0005 •
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A questionremainsat non-zeroenergiesasto theeffectof theslowlyvanishingmultipoles. The
answerobviouslydependson theaccuracyin question.Schwartzclaims (Reference4) that theeffects
are "washedout" to hisaccuracywhereasour owncalculationsuggeststhat particularly the dipole
contributionis not. It mayvery well bethat our inclusionof theseeffectsplus Schwartz'sinclusion
of thehighermultipolesbalanceeachotherout, andthatbothcalculationsgive lower boundsfor the
phaseshifts.
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